Invariant and Coinvariant Spaces for the Algebra of Symmetric Polynomials in Non-Commuting Variables

نویسندگان

  • François Bergeron
  • Aaron Lauve
چکیده

We analyze the structure of the algebra K〈x〉n of symmetric polynomials in non-commuting variables in so far as it relates to K[x]n , its commutative counterpart. Using the “place-action” of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of K〈x〉n analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. Résumé. Nous analysons la structure de l’algèbre K〈x〉n des polynômes symétriques en des variables non-commutatives pour obtenir des analogues des résultats classiques concernant la structure de l’anneau K[x]n des polynômes symétriques en des variables commutatives. Plus précisément, au moyen de “l’action par positions”, on réalise K[x]n comme sous-module de K〈x〉n . On découvre alors une nouvelle décomposition de K〈x〉n comme produit tensorial, obtenant ainsi un analogues des théorèmes classiques de Chevalley et Shephard-Todd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hecke Algebra Actions on the Coinvariant Algebra

Two actions of the Hecke algebra of type A on the corresponding polynomial ring are introduced. Both are deformations of the natural action of the symmetric group on polynomials, and keep symmetric functions invariant. An explicit combinatorial formula is given for the resulting graded characters on the coinvariant algebra.

متن کامل

Jack Polynomials and the Coinvariant Ring of G

We study the coinvariant ring of the complex reflection group G(r, p, n) as a module for the corresponding rational Cherednik algebra H and its generalized graded affine Hecke subalgebra H. We construct a basis consisting of non-symmetric Jack polynomials, and using this basis decompose the coinvariant ring into irreducible modules forH. The basis consists of certain non-symmetric Jack polynomi...

متن کامل

JACK POLYNOMIALS AND THE COINVARIANT RING OF G(r, p, n)

We study the coinvariant ring of the complex reflection group G(r, p, n) as a module for the corresponding rational Cherednik algebra H and its generalized graded affine Hecke subalgebra H. We construct a basis consisting of non-symmetric Jack polynomials, and using this basis decompose the coinvariant ring into irreducible modules for H. The basis consists of certain non-symmetric Jack polynom...

متن کامل

Quasi-invariant and Super-coinvariant Polynomials for the Generalized Symmetric Group

The aim of this work is to extend the study of super-coinvariant polynomials, introduced in [2, 3], to the case of the generalized symmetric group Gn,m, defined as the wreath product Cm ≀ Sn of the symmetric group by the cyclic group. We define a quasi-symmetrizing action of Gn,m on Q[x1, . . . , xn], analogous to those defined in [12] in the case of Sn. The polynomials invariant under this act...

متن کامل

Diagonal Temperley-lieb Invariants and Harmonics

In the context of the ring Q[x,y], of polynomials in 2n variables x = x1, . . . , xn and y = y1, . . . , yn, we introduce the notion of diagonally quasisymmetric polynomials. These, also called diagonal Temperley-Lieb invariants, make possible the further introduction of the space of diagonal Temperley-Lieb harmonics and diagonal Temperley-Lieb coinvariant space. We present new results and conj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010